skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Condon, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a model for recognizing typeset math formula images from connected components or symbols. In our approach, connected components are used to construct a line-of-sight (LOS) graph. The graph is used both to reduce the search space for formula structure interpretations, and to guide a classification attention model using separate channels for inputs and their local visual context. For classification, we used visual densities with Random Forests for initial development, and then converted this to a Convolutional Neural Network (CNN) with a second branch to capture context for each input image. Formula structure is extracted as a directed spanning tree from a weighted LOS graph using Edmonds’ algorithm. We obtain strong results for formulas without grids or matrices in the InftyCDB-2 dataset (90.89% from components, 93.5% from symbols). Using tools from the CROHME handwritten formula recognition competitions, we were able to compile all symbol and structure recognition errors for analysis. Our data and source code are publicly available. 
    more » « less